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A deep learning framework for identifying 
essential proteins by integrating multiple 

types of biological information  
Min Zeng, Min Li*, Zhihui Fei, Fang-Xiang Wu, Yaohang Li, Yi Pan and Jianxin Wang 

Abstract—Computational methods including centrality and machine learning-based methods have been proposed to identify 
essential proteins for understanding the minimum requirements of the survival and evolution of a cell. In centrality methods, 
researchers are required to design a score function which is based on prior knowledge, yet is usually not sufficient to capture 
the complexity of biological information. In machine learning-based methods, some selected biological features cannot 
represent the complete properties of biological information as they lack a computational framework to automatically select 
features. To tackle these problems, we propose a deep learning framework to automatically learn biological features without 
prior knowledge. We use node2vec technique to automatically learn a richer representation of protein-protein interaction (PPI) 
network topologies than a score function. Bidirectional long short term memory cells are applied to capture non-local 
relationships in gene expression data. For subcellular localization information, we exploit a high dimensional indicator vector to 
characterize their feature. To evaluate the performance of our method, we tested it on PPI network of S. cerevisiae. Our 
experimental results demonstrate that the performance of our method is better than traditional centrality methods and is 
superior to existing machine learning-based methods. To explore which of the three types of biological information is the most 
vital element, we conduct an ablation study by removing each component in turn. Our results show that the PPI network 
embedding contributes most to the improvement. In addition, gene expression profiles and subcellular localization information 
are also helpful to improve the performance in identification of essential proteins. 

Index Terms—Deep learning, essential proteins, protein-protein interaction network, gene expression, subcellular localization.  

——————————      —————————— 

1 INTRODUCTION

ssential proteins which play important roles in vari-
ous biological activities are indispensable in  cellular 

life [1, 2]. If one of essential proteins has been removed 
from an organism, then the organism cannot survive or 
develop [3]. Thus identification of essential proteins is of 
great significance in biology. Determination of essential 
proteins can help us to understand the minimum re-
quirements of the survival and evolution of a cell. Addi-
tionally, essential proteins are potential targets of new 
antibacterial drugs and can help find human disease 
genes. During the past several decades, traditional biolog-
ical experimental methods, such as single gene knockout 
[4], conditional knockout [5], and RNA interference [6, 7] 
have been employed to identify essential proteins. How-
ever, these biological experimental methods are expen-
sive, time-consuming and laborious. On the other hand, 

traditional biological experimental methods have some 
limitations -- they are not suitable for humans and other 
complex organisms. Thus developing accurate computa-
tional approaches to identify essential proteins would be 
of great value to biologists.  

For more than two decades, a lot of computational ap-
proaches for identifying essential proteins have been de-
veloped. Jeong et al. [8] pointed out that there is a posi-
tive correlation between the topological properties of pro-
teins in protein-protein interaction (PPI) networks and 
protein essentiality. Thus a lot of centrality methods 
which are based on topological features of PPI networks, 
such as degree centrality (DC) [9], betweenness centrality 
(BC) [10], closeness centrality (CC) [11], subgragh central-
ity (SC) [12], eigenvector centrality (EC) [13], information 
centrality (IC) [14] and edge clustering coefficient centrali-
ty (NC) [15], have been proposed to identify essential pro-
teins. These centrality methods have been integrated in 
the cytoscape plugins CytoNCA[16] and DyNetViewer 
[17]. Additionally, previous published studies have 
pointed out that some biological information associates 
with gene essentiality [18]. For example, gene expression 
profiles and subcellular localization information have 
some relationship with gene essentiality. Some research-
ers believed that gene expression profiles are useful to 
identify essential proteins because proteins are products 
of gene expressions. Localization of proteins in cells are 
usually related to protein functions because most essen-
tial biological processes take place in certain subcellular 
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localization [19, 20]. On the basis of these ideas, methods 
which combine network topological features with differ-
ent biological information have been proposed [21-27]. 

With the rapid development of high-throughput se-
quencing techniques, a lot of protein sequences and their 
properties have been obtained, which make it possible for 
us to use machine learning methods. Recent years, some 
machine learning-based methods have been used for 
identifying essential proteins and the most common used 
machine learning algorithms are support vector machine 
(SVM) [28, 29] and ensemble learning-based model [30, 
31]. Additionally, Naive Bayes, decision tree, neural net-
work, and genetic algorithms are also commonly used 
algorithms [32-37].  

Although centrality and mahine learning-based meth-
ods have obtained good results, they still have some limi-
tations and there is room for the improvement. Regard-
less of a centrality method or a machine learning-based 
method, the biggest limitation is the feature representa-
tion of biological information including network topology 
of PPI network, gene expression, and subcellular localiza-
tion. In centrality methods, researchers usually design a 
score function to represent the importance of each piece 
of biological information and combine these functions 
into an equation to determine the essentiality of a protein. 
Although centrality method is simple and convenient, but 
the main drawback is that we have to master a lot of prior 
knowledge to design a good score function. Moreover, 
the designed score function cannot always characterize 
the comprehensive biological information. For example, a 
single value of a score function cannot represent the com-
prehensive topological information of PPI networks. A 
PPI network usually has thousands of vertices and tens of 
thousands edges and the output of designed score func-
tion is just a real number. Yet it is difficult to represent the 
complete topological features by a real number. In ma-
chine learning-based methods, we usually collect some 
biological properties as features and then apply them into 
a machine learning classifier. The main problem with this 
method is that some selected biological features cannot 
represent the complete properties of biological infor-
mation. For example, network topological features were 
the widely used features in previous studies. DC, BC, and 
CC are the most frequently used network topological fea-
tures. Furthermore, there is lack of a computational 
framework to automatically select features from various 
pieces of biological information. The commonly used 
method for the feature selection is based on the results of 
statistical methods and the prior knowledge of research-
ers. As a result, it is difficult to explain why these features 
are chosen and what roles they play. 

To tackle the above limitations, we propose a deep 
learning framework to automatically learn biological fea-
tures without prior knowledge. We have used three dif-
ferent types of biological information including PPI net-
work, gene expression and subcellular localization infor-
mation in our study. Specifically, for PPI network, we 
employ a network representation learning technique 
called node2vec [38] to learn its topological features au-
tomatically, which have two advantages. First, it can learn 

a richer representation of PPI network than a score func-
tion in centrality methods. Second, it can automatically 
learn dense vectors without manually selecting some top-
ological features such as DC, BC, and CC. For gene ex-
pression data, we use bidirectional long short term 
memory (LSTM) cells [39] to extract features. Gene ex-
pression data are sequential data and bidirectional LSTM 
cells can capture non-local relationships in sequential da-
ta more efficiently than a score function. For subcellular 
localization information, we exploit an indicator vector to 
characterize their features. Compared with using a score 
function, the indicator vector has higher dimension and 
richer representation.  

We carry out computational experiments on the PPI 
network of S. cerevisiae. Accuracy, precision, recall, F-
measure and AUC (Area Under receiver operating char-
acteristic Curve) obtained by our method are 0.850, 0.680, 
0.505, 0.579 and 0.832, respectively, which is better than 
traditional centrality methods including DC, BC, CC, EC, 
NC, local average connectivity (LAC) [40], PeC [23], and 
WDC [41]. It also outperforms machine learning methods 
including SVM, decision tree, random forest and Ada-
boost. In order to investigate what role each piece of bio-
logical information plays in the success of our proposed 
deep learning framework, we compared the results ob-
tained by removing each individual component in our 
network. Detailed analyses show that the PPI network 
embedding is the major contribution to the improvement. 
Gene expression data and subcellular localization infor-
mation are also helpful for improving the performance of 
essential proteins identification as auxiliary biological 
information. 

2 METHODS 
In this section, we first present an overview of our pro-
posed deep learning framework in section 2.1 and then 
give the details of network representation learning, recur-
rent neural networks, subcellular localization information 
embedding, and assessment metrics in sections 2.2-2.5, 
respectively. 
 
2.1 Network Architecture 
As shown in Figure 1, our deep learning framework for 
identifying essential protein is an end-to-end model. The 
framework consists of two parts, biological information 
feature extraction and classification part. In this study, we 
make use of three types of biological data, PPI network, 
gene expression, and subcellular localization information. 
The biological information feature extraction part is re-
sponsible for learning useful features and patterns from 
these different types of biological data. For PPI network, a 
network representation learning technique called 
node2vec is utilized to learn a dense vector for each ver-
tex to represent the topological information of the net-
work. Then a fully connected layer with rectified linear 
unit (ReLU) activation function [42] is used for continue 
processing. Considering gene expression data are sequen-
tial data, we employ a recurrent neural network module 
called bidirectional long short term memory (LSTM) to 
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extract long-range dependencies. For subcellular localiza-
tion information, we design an indicator vector to 
represent the subcellular localizations of each protein. 
Then we utilize a fully connected layer to continuously 
process it. After the part of biological information feature 
extraction, three output vectors are concatenated together 
as the input of classification part which is made of a fully 
connected layer with sigmoid function. 

2.2 Network Representation Learning 
As previously mentioned, the topological properties of 
proteins in PPI network have a direct relationship with 
gene essentiality. Thus network topological feature ex-
traction plays a vital role in the study of identifying es-
sential proteins. In recent years researchers have pro-
posed a lot of centrality methods to predict essential pro-
teins. Meanwhile a lot of machine learning-based meth-
ods select some of these centralities as the features to train 
their classifiers. However, the output of these centrality 
methods is a real number and the topological features of a 
complex biological network usually cannot be captured 
by a real number. We believe it can offer a number 
of benefits by using a vector to replace a real number to 
capture the topological features of a biological network. 
Motivated by this idea, we employ the network represen-
tation learning to learn network topological features 
without any prior knowledge. 

Network representation learning aims at learning 
dense vector representation automatically for each vertex 
in a network. These learned dense vectors contain rich 
semantic and topological information and they can be 

applied to improve the performance of network analysis 
tasks. In this study, we use the node2vec technique. It is a 
deep learning method which learns vector representa-
tions of vertexes based on local network information. 
Node2vec technique utilizes a biased random walk algo-
rithm to obtain each vertex sequence. For a source node ݑ, 
node2vec uses the following formula to generate a se-
quence which has a fixed length of ݈. 

ܲሺܿ ൌ ିଵܿ|ݔ ൌ ሻݒ ൌ ቊ
గೡೣ

	if	ሺݒ, ܧ	ሻϵݔ

0				otherwise
                  (1) 

where ܿ stands for the ith node in the walk, ߨ௩௫ is the un-
normalized transition probability between nodes ݒ  and ݔ , 
and ܼ is the normalization constant. 

The 2nd order random walk with two parameters p and 
q is applied to guide this walk. Researchers set the un-
normalized transition probability to ௩௫ߨ	 ൌ ,ݐሺߙ ሻݔ ∙ ௩௫ݓ , 
,ݐሺߙ  .ሻ is given by the formula belowݔ

,ݐሺߙ ሻݔ ൌ

ە
۔

ۓ
ଵ


		if	݀௧௫ ൌ 0

1			if	݀௧௫ ൌ 1
ଵ


		if	݀௧௫ ൌ 2

                              (2) 

where ݀௧௫  denotes the shortest path distance between 
nodes t and x. 

 Node2vec technique introduces the Skip-Gram model 
which is a powerful and effective word representation 
method in the field of network representation learning to 
obtain represative vectors. The Skip-Gram model [43] is 
employed to predict surrounding context words given a 
center word. Following the idea of the Skip-Gram model, 

Fig. 1. An overview of proposed deep learning framework for identifying essential proteins. The input consists of three parts: PPI network, 
gene expression profiles, and subcellular localization information. For different types of biological data, different preprocessing methods 
are used. For PPI network, we use node2vec technique to obtain a 64-dimensional vector. The 64-dimensional vector is fed into a fully 
connected layer with 312 hidden units. We use an 11-dimensional vector to encode the information of subcellular localization, and the 11-
dimensional vector is fed into a fully connected layer with 512 hidden units. For gene expression data, a Bi-LSTM with 8 hidden units is 
used to capture patterns. The output is a 16-dimensional vector. Then we concatenate the three vectors to perform classification task.
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we aim at maximizing the co-occurrence likelihood be-
tween a target vertex and its context vertices. Then the 
learned dense vectors are successively updated by using 
the Skip-Gram model. These dense vectors are considered 
to be rich topological representation of a network.  

2.3 Recurrent Neural Networks 
The essentiality of a protein not only depends on topolog-
ical features of PPI networks, but also gene expression 
data. Some researchers have pointed that gene expression 
data can improve the performance for identifying essen-
tial proteins [22, 23, 37, 44, 45]. The gene expression data 
we used are sequential data and we thus use recurrent 
neural networks (RNNs) to handle them.  

RNNs are a family of deep neural networks that have a 
powerful capacity to deal with sequential data. RNNs can 
produce an output at each time step and have recurrent 
connections between hidden units. Thus they can read 
complete sequence and then produce outputs. However, 
the conventional RNNs only use previous context of the 
input sequence and they cannot exploit future context 
[46]. Inspired by the idea, bidirectional RNNs have been 
proposed to process sequential data in both directions 
with two hidden layers. LSTM uses three gates (i.e. input 
gate, forget gate, output gate) to store and process infor-
mation. The mechanism of a LSTM can be presented as 
follows.  

݅௧ ൌ ሺߪ ܹh௧ିଵ  ܷݔ௧  ܾሻ 
                               ௧݂ ൌ ൫ߪ ܹh௧ିଵ  ܷݔ௧  ܾ൯ 
                         							ܿ̃௧ ൌ tanhሺ ܹh௧ିଵ  ܷݔ௧  ܾሻ                  (3)                                                                                                                                     
																																			ܿ௧ ൌ f୲ ⊙ c୲ିଵ  i୲ ⊙ c୲ 
௧                                ൌ ሺߪ ܹh௧ିଵ  ܷݔ௧  ܾሻ 
                               h௧ ൌ ௧ ⊙ tanhሺܿ௧ሻ 
where W୧,	W,	Wୡ,	W୭,U୧,	U,	Uୡ,	U୭ are weight matrices and 
b୧,	b,	bୡ,	b୭ are bias terms; σ,	tanh and	⊙ denote element-
wise sigmoid, hyperbolic and product functions, respec-
tively. 

Bidirectional LSTM, which combines bidirectional 
RNNs with LSTM, has more powerful ability than con-
ventional RNNs and LSTM [47]. Considering the success 
of RNNs in sequential data, we apply bidirectional LSTM 
cells to extract features of gene expression data. Bidirec-
tional LSTM cells combine two LSTM cells, one moves 
forward from the start of the sequence and another moves 
forward from the end of the sequence. Thus the output of 
each time step depends on both the past and the future 
data, which can access long-range context in complete 
sequence. 

2.4 Subcellular Localization Information 
Embedding 

In addition to network topological features of PPI net-
works and gene expression data, subcellular localization 
information also associates with protein essentiality. Most 
essential biological processes take place in certain subcel-
lular localization. Thus it is reasonable to believe that lo-
calization of proteins in a cell usually determines the pro-
tein functions. To better identify essential proteins, sub-
cellular localization information is used in our experi-
ments. According to previous studies, the subcellular lo-
calizations are usually classified into eleven categories: 1) 

Cytoskeleton, 2) Cytosol, 3) Endoplasmic, 4) Endosome, 5) 
Extracellular, 6) Golgi, 7) Mitochondrion, 8) Nucleus, 9) 
Peroxisome, 10) Plasma and 11) Vacuole. We count the 
number of essential and non-essential proteins in each 
subcellular location and present these statistical results in 
Table 1. 

TABLE 1. 
THE NUMBER OF ESSENTIAL AND NON-ESSENTIAL PROTEINS IN 

EACH SUBCELLULAR LOCATION. 

Subcellular  
localization 

Number of   
essential  
proteins 

Number of       
Non-essential 

proteins 
Cytoskeleton 95 133 

Cytosol 138 289 

Endoplasmic 137 292 

Endosome 22 109 

Extracellular 1 70 

Golgi 61 184 

Mitochondrion 173 753 

Nucleus 809 1407 

Peroxisome 4 61 

Plasma 53 354 

Vacuole 19 238 

 
Centrality methods usually design a score function to 

measure the contribution of subcellular localization in-
formation. These methods are both simple and conven-
ient. However, there are two limitations. First, researchers 
are required to master a lot of prior knowledge in the 
field of proteomics to manually design a score function. 
Nevertheless, researchers come from different back-
ground, such as computer and life science, which cause 
some difficulty to explain which score function contains 
enough biological information. Second, these score func-
tions only use a real number to measure the contribution 
of subcellular localization information. As previously 
mentioned in section 2.2, biological process is very com-
plicated and thus is difficult to measure with a real num-
ber. To better embed subcellular localization information, 
we exploit an indicator vector to characterize their fea-
tures. The indicator vector is encoded in the following 
way. The subcellular localizations are generally classified 
into eleven categories, and thus we use an 11-dimensional 
vector to encode this information. In this 11-dimensional 
vector, each dimension represents a specific subcellular 
localization of a protein. If a protein performs its function 
at a certain subcellular localization, we assign the value of 
one to that localization; otherwise we assign the value of 
zero. For instance, in Figure 2, a protein performs its func-
tion at cytoskeleton and nucleus. Thus we assign one to 
these two dimensions and zero to others dimensions. Us-
ing such an indicator vector has several advantages. First, 
the indicator vector is a high dimensional vector that will 
have richer expression ability than a real number. Second, 
there is no need to have prior knowledge for researchers. 
We just input the raw information of subcellular localiza-
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tion and the deep learning framework can learn parame-
ters automatically. 

Fig.  2. An example of subcellular localization information embedding. 

2.5 Assessment Metrics 
To assess the performance of our deep learning frame-
work and other methods in identifying essential proteins, 
six measures: accuracy, precision, recall, F-measure, AUC, 
and average precision (AP) score are used. Accuracy is 
defined as: 

ݕܿܽݎݑܿܿܣ ൌ ሺܶܲ  ܶܰሻ/ሺܶܲ  ܶܰ  ܲܨ   ሻ                  (4)ܰܨ

Where TP and TN represent the number of samples of the 
essential and non-essential proteins which are classified 
correctly, respectively, and FN and FP represent the 
number of samples of the essential and non-essential pro-
teins which are classified wrongly, respectively. 

Precision and recall are defined as: 

݊݅ݏ݅ܿ݁ݎ     ൌ ܶܲ/ሺܶܲ   ሻ                                 (5)ܲܨ

݈݈ܽܿ݁ݎ                                  ൌ ܶܲ/ሺܶܲ   ሻ                                     (6)ܰܨ

Precision and AUC are the most important effective 
assessment metrics. F-measure is a tradeoff of precision 
and recall, and it is defined as:  

ܨ െ݉݁ܽ݁ݎݑݏ ൌ
൫ଵାఉమ൯∙∙௦

ఉమ∙௦ା
                  (7) 

where β is a parameter to adjust the weight between pre-
cision and recall. In this study, we set β=1. 

AUC is defined as the area under the Receiver Operat-
ing Characteristic (ROC) curve. In general, a classifier 
which provides a larger AUC shows it has better perfor-
mance. AUC is 1 represents perfect performance.   

AP score is the area under the precision-recall (PR) 
curve and it summarizes a PR curve as the weighted 
mean of precisions achieved at each threshold. PR curve 
is a statistical method used for visualizing and evaluating 
classifiers. It has been widely used for performance eval-
uation in identifying essential proteins. 

It is worth noting that in an imbalanced learning prob-
lem, we pay more attention to F-measure, AUC, and AP 
score, because these metrics can provide more insight into 
the performance of a classifier than accuracy, precision, 
and recall. 

3 DATA SOURCES 

This study uses multiple biological datasets, including 
PPI network dataset, essential protein dataset, gene ex-
pression dataset and subcellular localization dataset. 

PPI network of S. cerevisiae is the most complete and 
widely used in the study of identifying essential proteins. 
This dataset is downloaded from BioGRID database [48]. 
After removing repeated interaction and self-interactions, 
the processed dataset consists of 5616 proteins and 52833 
interactions.  

The essential proteins dataset of S. cerevisiae is ob-
tained from the following databases: MIPS [49], SGD [50], 
DEG [2] and SGDP. After integrating these databases, we 
obtained 1199 essential proteins. 

Gene expression dataset is retrieved from GEO (Gene 
Expression Omnibus) [51] with accession number 
GSE3431, which contain 6777 proteins and 36 time points 
in total. This dataset has three successive metabolic cycles 
with 12 time points in a cycle.  

Subcellular localization dataset of yeast is downloaded 
from knowledge channel of COMPARTMENTS database 
[52] on August 30, 2014. It integrates several source data-
bases including UniProtKB [53], MGD [54], SGD [50], 
FlyBase [55] and WormBase [56] database. After prepro-
cessing, there are 3923 proteins which have subcellular 
localization information. 

4 EXPERIMENTS AND DISCUSSION 

4.1 Implementation Details 
There are three different sources of biological data in our 
experiment and we deal with them separately. After pre-
processing three datasets (raw PPI network, gene expres-
sion profiles, subcellular localization information), we 
used 5297 proteins with known gene expression profiles 
and subcellular localization information in raw PPI net-
work. Among these proteins, 1185 are essential and 4112 
are non-essential. The ratio of essential proteins to non-
essential proteins is 1: 3.470. For PPI network, the 
node2vec technique was applied to generate representa-
tion vectors. The source codes of node2vec can be ob-
tained from https://github.com/aditya-grover/node2vec. 
We use the node2vec technique to generate a 64-
dimensional vector for each node in the PPI network. The 
detailed parameters are listed below. The window context 
size for optimization is 10, the length of walk per source is 
20, and the number of walk per source is 10. Then a fully 
connected layer of 312 units with ReLU activation func-
tion is used for preliminary processing. For gene expres-
sion data, bidirectional RNNs were utilized to extract 
long-range dependencies patterns. The bidirectional RNN 
layer has 8 hidden units and the output from the bidirec-
tional RNN layer is regularized with dropout (= 0.05) to 
avoid overfitting. For subcellular localization information, 
we use the embedding technique to obtain an 11-
dimensional vector for each protein, each dimension of 
which represents a specific subcellular localization of a 
protein. Then we use a fully connected layer of 512 units 
with ReLU activation function to continuously process it. 
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After using different methods to process these biological 
data, three different dimensional vectors are obtained. Then 
the three vectors are concatenated together to be fed to the 
fully connected layer with sigmoid activate function for clas-
sification. Dropout rate of 0.05 was used on fully connected 
layer in the network to avoid overfitting. The deep learning 
framework is implemented in Tensorflow [57]. To test the 
robustness of the model, the 5 fold cross-validation is ap-
plied to model evaluation. The Adam optimizer is used in 
the deep learning framework for training and the initial 
learning rate is set to 0.0005. The batch size is set to 32. 

In node2vec, researchers use the 2nd order random walk 
with two parameters p and q to sample a node sequence. 
Parameter q is the in-out parameter and parameter p is 
the return parameter. Parameter q allows the search to 
differentiate between “inward” and “outward” nodes. If 
q > 1, the random walk is biased towards nodes close to 
starting node. If q < 1, the walk is more inclined to visit 
nodes which are further away from the starting node. 
Parameter p controls the likelihood for immediately revis-
iting a node in the walk. If p> max (q, 1), it is less likely to 
sample an already visited node. If p< max (q, 1), it would 
lead the walk to backtrack a step. According to the origi-
nal paper of the node2vec technique, the best in-out and 
return hyper-parameters were learned using 5-fold cross-
validation with a grid search over p, q ∈ { 0.5, 1, 2 }. The 
results are shown in Table 2. We find that the best per-
formance is achieved when p=2 and q=1. 
 

TABLE 2.  
EFFECTS OF CHANGING DIFFERENT P AND Q ON PREDICTION 

PERFORMANCE. 

 

4.2 Comparisons with Other Topology-based 
Methods 
To evaluate the performance of our deep learning frame-
work, we compare our model with 6 other common used 
topology-based methods, DC, BC, CC, EC, NC and LAC. 
In addition, PeC and WDC, two methods which are based 
on the integration of PPI and gene expression data are 

compared. For these topology-based methods, we use the 
following way for evaluation. First, we calculate the 
scores of proteins by each topology-based method and 
ranked them in descending order according the scores. 
Then we select the top 1185 proteins (our processed PPI 
network has 1185 essential proteins) ranked by these 
methods as their predicted essential proteins. The rest of 
proteins are considered to be non-essential proteins. Fi-
nally, according to the comparison with the true labels of 
essential proteins and non-essential proteins, we obtain a 
confusion matrix to calculate each metric. In Table 3 we 
present experimental results including accuracy, preci-
sion, recall, and F-measure of DC, BC, CC, EC, NC, LAC, 
PeC, WDC and our method. From Table 3, we can see that 
almost all assessment metrics obtained by our deep learn-
ing framework are higher than those of other topology-
based methods except for recall obtained by NC. Accura-
cy, precision, recall, and F-measure obtained by our 
method are 0.850, 0.680, 0.505, and 0.579, respectively, 
which are better than DC (0.740, 0.436, 0.430 and 0.433), 
BC (0.722, 0.398, 0.393 and 0.395), CC (0.665, 0.262, 0.260, 
and 0.261), EC (0.727, 0.408, 0.401, and 0.404), NC (0.752, 
0.468, 0.464 and 0.466), LAC (0.745, 0.467, 0.409 and 0.436), 
PeC (0.747, 0.438, 0.430 and 0.434), and WDC (0.742, 0.455, 
0.459, and 0.457). These experimental results show that 
our method performs better than all those topology-based 
methods for identifying essential proteins. 
 

TABLE 3.  
COMPARISON OF PERFORMANCES OBTAINED BY OUR METHOD 

AND OTHER TOPOLOGY-BASED METHODS. 

 

4.3 Comparisons with Other Machine Learning 
Algorithms 
We have also compared our methods with commonly 
used algorithms including SVM, decision tree, random 
forest, and Adaboost. Specifically, we concatenate each 
node vectors which are generated by node2vec, gene ex-
pression data, and subcellular localization embedding  
vector into a long vector as the input of the four machine 
learning methods. All machine learning methods are im-
plemented by using scikit-learn [58]. To test the robustness 

Parameters 

setting 

Accuracy Precision Recall F-measure AUC 

p=1, q=0.5 0.846 0.695 0.450 0.546 0.841 

p=1, q=1 0.844 0.691 0.440 0.538 0.839 

p=1, q=2 0.845 0.708 0.422 0.529 0.835 

p=2, q=0.5 0.844 0.691 0.440 0.538 0.836 

p=2, q=1 0.850 0.680 0.505 0.579 0.832 

p=2, q=2 0.846 0.695 0.450 0.546 0.833 

p=0.5, q=0.5 0.853 0.777 0.399 0.527 0.835 

p=0.5, q=1 0.847 0.726 0.413 0.526 0.831 

p=0.5, q=2 0.855 0.739 0.454 0.563 0.837 

Method Accuracy Precision Recall F-measure 

DC 0.740 0.436 0.430 0.433 

BC 0.722 0.398 0.393 0.395 

CC 0.665 0.262 0.260 0.261 

EC 0.727 0.408 0.401 0.404 

NC 0.752 0.468 0.464 0.466 

LAC 0.745 0.467 0.409 0.436 

PeC 0.747 0.438 0.430 0.434 

WDC 0.742 0.455 0.459 0.457 

Our 
method 

0.850 0.680 0.505 0.579 
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of these models, a 5 fold cross-validation is applied to model 
evaluation and the performance results in Table 4. From 
Table 4, we also find that almost all assessment metrics 
obtained by our method outperform that of other topolo-
gy-based methods except for precision obtained by SVM 
and random forest. Our method obtained accuracy, preci-
sion, recall, F-measure, and AUC with values of 0.85, 0.68, 
0.50, 0.58, and 0.83, respectively, which is better than SVM 
(0.82, 0.85, 0.13, 0.23, and 0.73), decision tree (0.76, 0.43, 
0.47, 0.45, and 0.65), random forest (0.83, 0.76, 0.23, 0.36, 
and 0.76), and Adaboost (0.81, 0.55, 0.34, 0.42, and 0.73). 
Figure 3 shows the ROC and PR curves of our method 
and other machine learning methods. The ROC curve of 
our method is significantly higher than other machine 
learning methods. Furthermore, we obtained the AP score 
of 0.63 which is better than SVM (0.47), decision tree 
(0.51), random forest (0.55), and Adaboost (0.44). From 
these results, we can conclude that our method signifi-
cantly outperforms other machine learning methods. 

 
TABLE 4.  

PERFORMANCES (ACCURACY, PRECISION, RECALL, F-MEASURE, 
AND AUC) OF OUR MODEL AND OTHER MACHINE LEARNING 

METHODS. 
Model Accuracy Precision Recall F-measure AUC 

SVM 0.82 0.85 0.13 0.23 0.73 

Decision tree 0.76 0.43 0.47 0.45 0.65 

Random forest  0.83 0.76 0.23 0.36 0.76 

Adaboost 0.81 0.55 0.34 0.42 0.73 

Our method 0.85 0.68 0.50 0.58 0.83 

 

4.4 Ablation Study 
In this study, three different sources of biological infor-
mation were used in experiments. In order to discover 
what role each piece of biological information plays in the 
success of our proposed deep learning framework, we 
conduct an ablation study by removing individual input 
component in our network. Specifically, we test the per-
formances of models without PPI network embedding, 
gene expression data, or subcellular localization infor-
mation in turn. We use the remaining two components to 

form a large vector to retrain the model. From the results 
(accuracy, precision, recall, F-measure, and AUC) pre-
sented in Table 5, we find that PPI network embedding is 
the most important component in our deep learning 
framework. Without the PPI network embedding layer, 
accuracy, precision, recall, F-measure, and AUC drops 
from 0.850, 0.680, 0.505, 0.579, and 0.832 to 0.805, 0.593, 
0.160, 0.252, and 0.755, respectively. This finding is also 
consistent with previous study [59]. Subcellular localiza-
tion information is also important as accuracy, precision, 
recall, F-measure, and AUC drop to 0.830, 0.661, 0.358, 
0.464, and 0.813 without them. In addition, compared 
with other biological information, gene expression data 
seems not as important, but they are also beneficial for 
enhancing the performance. Without gene expression 
data, accuracy, precision, recall, F-measure, and AUC 
drop to 0.832, 0.641, 0.417, 0.506, and 0.826, respectively. 
In Figure 4 we show that the ROC and PR curves of our 
method and other models removing different components. 
The ROC curve of our method is clearly higher than 
models without PPI network embedding and subcellular 
localization information and a little bit higher than model 
without gene expression data. Moreover, the AP score of 
0.63 is obtained by our method, which is better than mod-
els without PPI network embedding (0.41), gene expres-
sion data (0.60), or subcellular localization information 
(0.59), respectively. 

Our results indicate that three different types of biological 
information play their roles in identifying essential proteins 
and the importance of these different types of information 
are not the same. The most vital element is PPI network em-
bedding. Gene expression profiles and subcellular localiza-
tion information are used as auxiliary data to improve the 
performance for identifying essential proteins. We hypothe-
size that there are two main reasons. The first reason is that 
topological features of PPI network indeed have a strong 
relationship with gene essentiality. Since previous study 
have showed that there is a strong positive correlation be-
tween topological features of PPI network and gene essenti-
ality, and thus almost all methods use the PPI network to-
pology as their input features for prediction. The second 
resson is that the dimension of dense vector generated by the 

Fig. 3. ROC and PR curves of our model and other machine learning methods. 
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node2vec technique is higher than that of the other two in-
put vectors in our study. The dense vector generated by the 
node2vec technique is a 64-dimensional dense vector, the 
vectors of gene expression data processed by RNNs are two 
8-dimensional vectors, and the subcellular localization in-
formation embedding vector is an 11-dimensional sparse 
vector. Among the three input vectors, dense vector generat-
ed by node2vec occupies the largest proportion and thus has 
the largest affect to the results.  

 
TABLE 5.  

PERFORMANCES (ACCURACY, PRECISION, RECALL, F-MEASURE, 
AND AUC) OF OUR MODEL AND OTHER MODELS REMOVING DIF-

FERENT COMPONENT. 

 

5 CONCLUSION 
Many computational methods have been proposed to 
identify essential proteins, but most of them require a lot 
of prior knowledge. Centrality methods need prior 
knowledge to design good score functions and machine 
learning-based methods need prior knowledge to select 
representative biological properties as features. But some 
designed score functions cannot capture the complexity 
of biological information and it is very difficult to select 
well-expressed features in machine learning-based meth-
ods. To tackle these problems, we propose a deep learn-
ing framework for identifying essential proteins without 
any prior knowledge. In this framework, we have used 
three different types of biological information including 
PPI network, gene expression data, and subcellular locali-
zation information. For PPI network, we employ network 

representation learning technique called node2vec to au-
tomatically learn semantic and topological features. This 
technique can maps vertices to a vector space and thus 
have a richer representation of PPI network than tradi-
tional score function. For gene expression data, we utilize 
bidirectional LSTM cells to better extract non-local rela-
tionships considering they are sequential data. For subcel-
lular localization information, we design a high dimen-
sional indicator vector to encode the location of each pro-
tein perform its function. This indicator vector is more 
expressive than a real number. After preprocessing the 
different types of biological information, three output 
vectors are concatenate together to be fed to a fully con-
nected layer for classification. In order to evaluate the 
efficiency of our method, we have carried out experi-
ments on PPI network of S. cerevisiae. Comparison with 
widely used centrality methods of DC, BC, CC, EC, NC, 
LAC, PeC, and WDC demonstrate that our method per-
forms better than these existing centrality methods. Ad-
ditionally, comparisons with widely used machine learn-
ing methods of SVM, decision tree, random forest, and 
Adaboost show that our method outperforms machine 
learning-based methods. To explore which piece of bio-
logical information is the most vital element in the suc-

cess of the proposed method, we have conducted experi-
ments by removing PPI network, gene expression data, or 
subcellular localization information. The results show 
that the major contribution to the improvement originates 
from the PPI network features learned by the node2vec 
technique while subcellular localization information and 
gene expression profiles also play roles in the improve-
ment. 
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Model Accuracy Precision Recall 
F-

measure 
AUC 

Without PPI net-

work 
0.805 0.593 0.160 0.253 0.755 

Without gene 

expression data 
0.832 0.641 0.417 0.506 0.826 

Without subcellu-

lar localization 
0.830 0.661 0.358 0.464 0.813 

Our method 0.850 0.680 0.505 0.579 0.832 

Fig. 4. ROC and PR curves of our model and other models removing different component. 
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